Neuronal Physiology following Proton Radiation Exposure

Andre Obenaus, Ph.D.

Director, Non-Invasive Imaging Laboratory,
Radiobiology Program, Radiation Medicine Department
Loma Linda University

Neuronal Changes following Radiation

Acute
(0-4 wks)
reversible

Early Delayed
(1-6 mo)
reversible

Late Delayed
> 6 mo
irreversible

Consequences

Critical Questions?

- What are the CNS effects of proton radiation (>10 MeV)?
- How do non-neuronal cells (glial etc) interact with neuronal cells after exposure?
- Is CNS connectivity altered after radiation?
- Are there potential biomarkers or other identifiers for CNS injury after radiation?

CNS Effects of Proton Radiation?

- What are the functional consequences of radiation to neuronal populations?
- Single large dose: Bad?
 Multiple small doses: Worse?
 Time dependence of exposure?
- Critical sites within the brain that may be susceptible to radiation-induced damage?
- Are neuronal precursor cells especially vulnerable to radiation? Functional implications?

Neuronal vs. Non-neuronal?

- Differential sensitivity between neurons vs. non-neuronal cells?
- Which non-neuronal cells are most important? Microglia, astrocytes, etc.
- Speed and magnitude of response? Dose dependence? Dependent on number of neurons present?

Altered CNS connectivity?

- Are white matter tracts more important than gray matter regions?
- Neuronal reorganization? Large scale cortical remodeling vs. small regional changes?
- Functional consequences of altered connectivity?

CNS Biomarkers?

- Invasive vs. non-invasive techniques?
- Highly sensitive biomarker? With dose dependence?
 - Brain metabolites?
 - Oxygen status / consumption?
 - Metabolic needs?
- Relatively rapid, simple assay?

Potential Techniques

- Electrophysiology
 - Functional assessment of circuitry
 - Tests small group of cells
- Magnetic resonance imaging
 - Rapidly survey large brain regions
 - Anatomical, metabolic, functional imaging
 - Complimentary histology

In Vivo & In Vitro Electrophysiology

Advantages

- Single cell or small populations (<500 cells)
- In vitro studies examine short time periods (<24 hours) ie: acute effects
- In vivo studies examine long time periods (>24 hours) ie: chronic changes
- Can examine channels, synaptic and network changes

In Vivo & In Vitro Electrophysiology

- Disadvantages
 - Examines only regional changes
 - Time consuming to perform, but excellent data
 - Requires specialized equipment (~\$150K) and trained personnel
 - Need to determine which test to run

Changes in paired pulse inhibition after PPS

Synaptic Reorganization

Advantages of MRI

- "natural" reporter protons from H₂0
- non-invasive
- multiple contrast levels
- physiologically relevant time

Disadvantages of MRI

- insensitive 10¹⁷ spins req'd
- skilled research/ technical personnel required
- expensive
 - -1-2 M\$ to buy
 - 130K\$/y to maintain

MRI Modalities

- T1 anatomical, relaxation times
- T2 anatomical, relaxation times
- Spectroscopy metabolite levels
- Diffusion-Weighted mobility of protons
- Perfusion-Weighted blood flow
- Blood Oxygenation Level Dependent (BOLD) MRI - activity-related brain function

MRI Methods

DWI Tract Tracing

In vivo 3D-fiber reconstruction for the rat brain.
Light blue: genu of corpus callosum, pink: splenium of corpus callosum, blue: fimbria, red: internal capsule, green: optic tract, peach: stria terminalis, yellow: anterior commissure.

Tumor MRI/MRS

MRI

Flash Image

Histology

MRS Maps

Proton Irradiation

Summary

- Obtainable short-term goals (<5 yrs):
 - Better understanding of radiation effects on CNS:
 - cellular, and
 - functional & physiological consequences
 - Sensitivity profiles of various brain regions
 - Understanding of neuronal and non-neuronal interactions?
 - Development of potential "biomarker"

Summary

- Long-term goals (>5 yrs):
 - Significance of dose(s) on CNS function
 - Long-term changes associated with radiation
 - Connectivity
 - Behavior
 - Cognition
 - Precise biomarkers with high specificity and sensitivity
 - Neurological immune responsiveness